
Boris Smus

Boston

Web Audio API

978-1-449-49332-6

[FILL IN]

Web Audio API
By Boris Smus

Copyright © 2013 Boris Smus. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Kara Ebrahim
Interior Designer: David Futato

Cover Designer: Karen Montgomery
Illustrator: Robert Romano

March, 2013: First Edition

Revision History for the First Edition
2013-03-07: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449332686 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Web Audio API, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449332686

To my parents: thank you for the music

Table of Contents

Preface. vii

1. Fundamentals. 1
A Brief History of Audio on the Web 1
Games and Interactivity 2
The Audio Context 3
Initializing an Audio Context 4
Types of Web Audio Nodes 5
Connecting the Audio Graph 5
Power of Modular Routing 6
Loading and Playing Sounds 10
Putting It All Together 11

2. Perfect Timing and Latency. 13
Timing Model 13
Precise Playback and Resume 13
Scheduling Precise Rhythms 15
Changing Audio Parameters 16
Gradually Varying Audio Parameters 16
Custom Timing Curves 18

3. Volume and Loudness. 21
Equal Power Crossfading 23
Using Meters to Detect and Prevent Clipping 25
Dynamics Compression 28

4. Pitch and the Frequency Domain. 29
Pitch and playbackRate 31

v

Multiple Sounds with Variations 32
Oscillator-Based Direct Sound Synthesis 34

5. Analysis and Visualization. 37
Frequency Analysis 37
Animating with requestAnimationFrame 39
Visualizing Sound 40

6. Advanced Topics. 43
Adding Effects via Filters 44
Procedurally Generated Sound 45
Room Effects 47
Spatialized Sound 49
Audio Processing with JavaScript 51

7. Integrating with Other Technologies. 53
Setting Up Background Music with the <audio> Tag 53
Live Audio Input 54
Page Visibility and Audio Playback 55

8. Conclusion. 57

A. Deprecation Notes. 59

B. Glossary. 61

vi | Table of Contents

Preface

Thank you for picking up the first book on the topic of the Web Audio API. When I
first learned of the Web Audio API, I was a complete digital-audio novice embarking
on a journey to learn and understand the API, as well as the underlying fundamental
audio concepts. This book is what I wish existed when I started experimenting with
the API in 2011. It is intended to be a springboard for web developers like I was, with
little to no digital-audio expertise. It contains the things I learned from about a year
of studying digital audio processing, having conversations with audio experts, and
experimenting with the API.

The theoretical bits will be filled in through asides, which will explain the concepts. If
you are a digital-audio guru, feel free to skip these. The practical bits will be illustra‐
ted with code snippets to give you a better sense of how the API works in real life.
Many of the examples also include links to working samples that can be found on this
Web Audio API site.

Structure of This Book
This book aims to give a high-level overview of a number of important features of the
Web Audio API, but is not an exhaustive survey of every available feature. It is not
intended as a comprehensive guide, but as an easy starting point. Most sections of the
book start off by describing an application, outlining the problem and solution, and
then showing relevant sample JavaScript Web Audio API code. Interspersed theory
sections explain some of the underlying audio concepts in more general terms. The
book is structured in the following way:

1. Chapter 1, Fundamentals covers the basics of audio graphs, typical graph config‐
urations, audio nodes inside those graphs, loading sound files, and playing
sounds back.

vii

http://webaudioapi.com/samples
http://webaudioapi.com/samples

2. Chapter 2, Perfect Timing and Latency delves into precise scheduling of sound in
the future, multiple simultaneous sounds, changing parameters directly or over
time, and crossfading.

3. Chapter 3, Volume and Loudness covers gain, volume, and loudness, as well as
preventing clipping via metering and dynamics compression.

4. Chapter 4, Pitch and the Frequency Domain is all about sound frequency, an
important property of periodic sound. We’ll also talk about oscillators and exam‐
ining sound in the frequency domain.

5. Chapter 5, Analysis and Visualization builds on the earlier chapters to dive into
more advanced topics, including biquad filters, simulating acoustic environ‐
ments, and spatialized sounds.

6. In Chapter 6, Advanced Topics, we will take a break from synthesizing and
manipulating sound, and analyze and visualize sound instead.

7. Chapter 7, Integrating with Other Technologies talks about interfacing Web Audio
API with other web APIs like WebRTC and the <audio> tag.

The source code of the book itself is released under the Creative Commons license
and is available on GitHub.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

viii | Preface

https://github.com/borismus/webaudioapi.com

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Web Audio API by Boris Smus
(O’Reilly). Copyright 2013 Boris Smus, 978-1-449-33268-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in tech‐
nology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,

Preface | ix

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Course Technology, and dozens more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/web-audio-api.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Thanks!
I am not an expert in digital signals processing, mastering, or mixing by any stretch. I
am a software engineer and amateur musician with enough interest in digital audio to
spend some time exploring the Web Audio API and wrapping my head around some
of its important concepts. To write this book, I had to continually bug others with far
more digital-audio experience than me. I’d like to thank them for answering my ques‐
tions, providing technical reviews for this book, and encouraging me along the way.

Specifically, this book could not have been written without the generous mentorship
of Chris Rogers, the primary author of the Web Audio specification and also its main
WebKit/Chrome implementer. I owe many thanks to Chris Wilson, who gave an
incredibly thorough technical review of this book’s content, and to Mark Goldstein,
who spent a few late nights doing editorial passes. My thanks to Kevin Ennis for
donating webaudioapi.com for hosting samples related to the book. Last but not least,
I would have never written this book without the support and interest of a vibrant
Web Audio API community on the Web.

x | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/web-audio-api
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://webaudioapi.com

Without further ado, let’s dive in!

Preface | xi

CHAPTER 1

Fundamentals

This chapter will describe how to get started with the Web Audio API, which brows‐
ers are supported, how to detect if the API is available, what an audio graph is, what
audio nodes are, how to connect nodes together, some basic node types, and finally,
how to load sound files and playback sounds.

A Brief History of Audio on the Web
The first way of playing back sounds on the web was via the <bgsound> tag, which let
website authors automatically play background music when a visitor opened their
pages. This feature was only available in Internet Explorer, and was never standar‐
dized or picked up by other browsers. Netscape implemented a similar feature with
the <embed> tag, providing basically equivalent functionality.

Flash was the first cross-browser way of playing back audio on the Web, but it had the
significant drawback of requiring a plug-in to run. More recently, browser vendors
have rallied around the HTML5 <audio> element, which provides native support for
audio playback in all modern browsers.

Although audio on the Web no longer requires a plug-in, the <audio> tag has signifi‐
cant limitations for implementing sophisticated games and interactive applications.
The following are just some of the limitations of the <audio> element:

• No precise timing controls
• Very low limit for the number of sounds played at once
• No way to reliably pre-buffer a sound
• No ability to apply real-time effects

1

• No way to analyze sounds

There have been several attempts to create a powerful audio API on the Web to
address some of the limitations I previously described. One notable example is the
Audio Data API that was designed and prototyped in Mozilla Firefox. Mozilla’s
approach started with an <audio> element and extended its JavaScript API with addi‐
tional features. This API has a limited audio graph (more on this later in “The Audio
Context” on page 3), and hasn’t been adopted beyond its first implementation. It is
currently deprecated in Firefox in favor of the Web Audio API.

In contrast with the Audio Data API, the Web Audio API is a brand new model, com‐
pletely separate from the <audio> tag, although there are integration points with
other web APIs (see Chapter 7). It is a high-level JavaScript API for processing and
synthesizing audio in web applications. The goal of this API is to include capabilities
found in modern game engines and some of the mixing, processing, and filtering
tasks that are found in modern desktop audio production applications. The result is a
versatile API that can be used in a variety of audio-related tasks, from games, to inter‐
active applications, to very advanced music synthesis applications and visualizations.

Games and Interactivity
Audio is a huge part of what makes interactive experiences so compelling. If you don’t
believe me, try watching a movie with the volume muted.

Games are no exception! My fondest video game memories are of the music and
sound effects. Now, nearly two decades after the release of some of my favorites, I still
can’t get Koji Kondo’s Zelda and Matt Uelmen’s Diablo soundtracks out of my head.
Even the sound effects from these masterfully-designed games are instantly recogniz‐
able, from the unit click responses in Blizzard’s Warcraft and Starcraft series to sam‐
ples from Nintendo’s classics.

Sound effects matter a great deal outside of games, too. They have been around in
user interfaces (UIs) since the days of the command line, where certain kinds of
errors would result in an audible beep. The same idea continues through modern UIs,
where well-placed sounds are critical for notifications, chimes, and of course audio
and video communication applications like Skype. Assistant software such as Google
Now and Siri provide rich, audio-based feedback. As we delve further into a world of
ubiquitous computing, speech- and gesture-based interfaces that lend themselves to
screen-free interactions are increasingly reliant on audio feedback. Finally, for visu‐
ally impaired computer users, audio cues, speech synthesis, and speech recognition
are critically important to create a usable experience.

Interactive audio presents some interesting challenges. To create convincing in-game
music, designers need to adjust to all the potentially unpredictable game states a
player can find herself in. In practice, sections of the game can go on for an unknown

2 | Chapter 1: Fundamentals

duration, and sounds can interact with the environment and mix in complex ways,
requiring environment-specific effects and relative sound positioning. Finally, there
can be a large number of sounds playing at once, all of which need to sound good
together and render without introducing quality and performance penalties.

The Audio Context
The Web Audio API is built around the concept of an audio context. The audio con‐
text is a directed graph of audio nodes that defines how the audio stream flows from
its source (often an audio file) to its destination (often your speakers). As audio
passes through each node, its properties can be modified or inspected. The simplest
audio context is a connection directly form a source node to a destination node
(Figure 1-1).

Figure 1-1. The simplest audio context

An audio context can be complex, containing many nodes between the source and
destination (Figure 1-2) to perform arbitrarily advanced synthesis or analysis.

Figures 1-1 and 1-2 show audio nodes as blocks. The arrows represent connections
between nodes. Nodes can often have multiple incoming and outgoing connections.
By default, if there are multiple incoming connections into a node, the Web Audio
API simply blends the incoming audio signals together.

The concept of an audio node graph is not new, and derives from popular audio
frameworks such as Apple’s CoreAudio, which has an analogous Audio Processing
Graph API. The idea itself is even older, originating in the 1960s with early audio
environments like Moog modular synthesizer systems.

The Audio Context | 3

http://bit.ly/15tPRNM
http://bit.ly/15tPRNM
http://en.wikipedia.org/wiki/Moog_synthesizer

Figure 1-2. A more complex audio context

Initializing an Audio Context
The Web Audio API is currently implemented by the Chrome and Safari browsers
(including MobileSafari as of iOS 6) and is available for web developers via JavaScript.
In these browsers, the audio context constructor is webkit-prefixed, meaning that
instead of creating a new AudioContext, you create a new webkitAudioContext.
However, this will surely change in the future as the API stabilizes enough to ship un-
prefixed and as other browser vendors implement it. Mozilla has publicly stated that
they are implementing the Web Audio API in Firefox, and Opera has started partici‐
pating in the working group.

With this in mind, here is a liberal way of initializing your audio context that would
include other implementations (once they exist):

var contextClass = (window.AudioContext ||
 window.webkitAudioContext ||
 window.mozAudioContext ||
 window.oAudioContext ||
 window.msAudioContext);
if (contextClass) {
 // Web Audio API is available.
 var context = new contextClass();
} else {

4 | Chapter 1: Fundamentals

https://wiki.mozilla.org/Web_Audio_API
http://lists.w3.org/Archives/Public/public-audio/2012AprJun/0279.html
http://lists.w3.org/Archives/Public/public-audio/2012AprJun/0279.html

 // Web Audio API is not available. Ask the user to use a supported browser.
}

A single audio context can support multiple sound inputs and complex audio graphs,
so generally speaking, we will only need one for each audio application we create. The
audio context instance includes many methods for creating audio nodes and manipu‐
lating global audio preferences. Luckily, these methods are not webkit-prefixed and
are relatively stable. The API is still changing, though, so be aware of breaking
changes (see Appendix A).

Types of Web Audio Nodes
One of the main uses of audio contexts is to create new audio nodes. Broadly speak‐
ing, there are several kinds of audio nodes:

Source nodes
Sound sources such as audio buffers, live audio inputs, <audio> tags, oscillators,
and JS processors

Modification nodes
Filters, convolvers, panners, JS processors, etc.

Analysis nodes
Analyzers and JS processors

Destination nodes
Audio outputs and offline processing buffers

Sources need not be based on sound files, but can instead be real-time input from a
live instrument or microphone, redirection of the audio output from an audio ele‐
ment [see “Setting Up Background Music with the <audio> Tag” on page 53], or
entirely synthesized sound [see “Audio Processing with JavaScript” on page 51].
Though the final destination-node is often the speakers, you can also process without
sound playback (for example, if you want to do pure visualization) or do offline pro‐
cessing, which results in the audio stream being written to a destination buffer for
later use.

Connecting the Audio Graph
Any audio node’s output can be connected to any other audio node’s input by using
the connect() function. In the following example, we connect a source node’s output
into a gain node, and connect the gain node’s output into the context’s destination:

// Create the source.
var source = context.createBufferSource();
// Create the gain node.
var gain = context.createGain();

Types of Web Audio Nodes | 5

// Connect source to filter, filter to destination.
source.connect(gain);
gain.connect(context.destination);

Note that context.destination is a special node that is associated with the default
audio output of your system. The resulting audio graph of the previous code looks
like Figure 1-3.

Figure 1-3. Our first audio graph

Once we have connected up a graph like this we can dynamically change it. We can
disconnect audio nodes from the graph by calling node.disconnect(outputNumber).
For example, to reroute a direct connection between source and destination, circum‐
venting the intermediate node, we can do the following:

source.disconnect(0);
gain.disconnect(0);
source.connect(context.destination);

Power of Modular Routing
In many games, multiple sources of sound are combined to create the final mix. Sour‐
ces include background music, game sound effects, UI feedback sounds, and in a
multiplayer setting, voice chat from other players. An important feature of the Web
Audio API is that it lets you separate all of these different channels and gives you full
control over each one, or all of them together. The audio graph for such a setup might
look like Figure 1-4.

Figure 1-4. Multiple sources with individual gain control as well as a master gain

We have associated a separate gain node with each of the channels and also created a
master gain node to control them all. With this setup, it is easy for your players to

6 | Chapter 1: Fundamentals

control the level of each channel separately, precisely the way they want to. For exam‐
ple, many people prefer to play games with the background music turned off.

CRITICAL THEORY
What Is Sound?

In terms of physics, sound is a longitudinal wave (sometimes called a pressure wave)
that travels through air or another medium. The source of the sound causes mole‐
cules in the air to vibrate and collide with one another. This causes regions of high
and low pressure, which come together and fall apart in bands. If you could freeze
time and look at the pattern of a sound wave, you might see something like
Figure 1-5.

Figure 1-5. A sound pressure wave traveling through air particles

Mathematically, sound can be represented as a function, which ranges over pressure
values across the domain of time. Figure 1-6 shows a graph of such a function. You
can see that it is analogous to Figure 1-5, with high values corresponding to areas
with dense particles (high pressure), and low values corresponding to areas with
sparse particles (low pressure).

Figure 1-6. A mathematical representation of the sound wave in Figure 1-5

Electronics dating back to the early twentieth century made it possible for us to cap‐
ture and recreate sounds for the first time. Microphones take the pressure wave and
convert it into an electric signal, where (for example) +5 volts corresponds to the
highest pressure and −5 volts to the lowest. Conversely, audio speakers take this volt‐
age and convert it back into the pressure waves that we can hear.

Power of Modular Routing | 7

Whether we are analyzing sound or synthesizing it, the interesting bits for audio pro‐
grammers are in the black box in Figure 1-7, tasked with manipulating the audio sig‐
nal. In the early days of audio, this space was occupied by analog filters and other
hardware that would be considered archaic by today’s standards. Today, there are
modern digital equivalents for many of those old analog pieces of equipment. But
before we can use software to tackle the fun stuff, we need to represent sound in a way
that computers can work with.

Figure 1-7. Recording and playback

CRITICAL THEORY
What Is Digital Sound?

We can do this by time-sampling the analog signal at some frequency, and encoding
the signal at each sample as a number. The rate at which we sample the analog signal
is called the sample rate. A common sample rate in many sound applications is 44.1
kHz. This means that there are 44,100 numbers recorded for each second of sound.
The numbers themselves must fall within some range. There is generally a certain
number of bits allocated to each value, which is called the bit depth. For most recor‐
ded digital audio, including CDs, the bit depth is 16, which is generally enough for
most listeners. Audiophiles prefer 24-bit depth, which gives enough precision that
people’s ears can’t hear the difference compared to a higher depth.

The process of converting analog signals into digital ones is called quantization (or
sampling) and is illustrated in Figure 1-8.

8 | Chapter 1: Fundamentals

Figure 1-8. Analog sound being quantized, or transformed into digital sound

In Figure 1-8, the quantized digital version isn’t quite the same as the analog one
because of differences between the bars and the smooth line. The difference (shown
in blue) decreases with higher sample rates and bit depths. However, increasing these
values also increases the amount of storage required to keep these sounds in memory,
on disk, or on the Web. To save space, telephone systems often used sample rates as
low as 8 kHz, since the range of frequencies needed to make the human voice intelli‐
gible is far smaller than our full audible-frequency range.

By digitizing sound, computers can treat sounds like long arrays of numbers. This
sort of encoding is called pulse-code modulation (PCM). Because computers are so
good at processing arrays, PCM turns out to be a very powerful primitive for most
digital-audio applications. In the Web Audio API world, this long array of numbers
representing a sound is abstracted as an AudioBuffer. AudioBuffers can store multi‐
ple audio channels (often in stereo, meaning a left and right channel) represented as
arrays of floating-point numbers normalized between −1 and 1. The same signal can
also be represented as an array of integers, which, in 16-bit, range from (−215) to (215
− 1).

CRITICAL THEORY
Audio Encoding Formats

Raw audio in PCM format is quite large, which uses extra memory, wastes space on a
hard drive, and takes up extra bandwidth when downloaded. Because of this, audio is
generally stored in compressed formats. There are two kinds of compression: lossy
and lossless. Lossless compression (e.g., FLAC) guarantees that when you compress
and then uncompress a sound, the bits are identical. Lossy audio compression (e.g.,
MP3) exploits features of human hearing to save additional space by throwing out

Power of Modular Routing | 9

bits that we probably won’t be able to hear anyway. Lossy formats are generally good
enough for most people, with the exception of some audiophiles.

A commonly used metric for the amount of compression in audio is called bit rate,
which refers to the number of bits of audio required per second of playback. The
higher the bit rate, the more data that can be allocated per unit of time, and thus the
less compression required. Often, lossy formats, such as MP3, are described by their
bit rate (common rates are 128 and 192 Kb/s). It’s possible to encode lossy codecs at
arbitrary bit rates. For example, telephone-quality human speech is often compared
to 8 Kb/s MP3s. Some formats such as OGG support variable bit rates, where the bit
rate changes over time. Be careful not to confuse this concept with sample rate or bit
depth [see “What Is Sound?” on page 7]!

Browser support for different audio formats varies quite a bit. Generally, if the Web
Audio API is implemented in a browser, it uses the same loading code that the
<audio> tag would, so the browser support matrix for <audio> and the Web Audio
API is the same. Generally, WAV (which is a simple, lossless, and typically uncom‐
pressed format) is supported in all browsers. MP3 is still patent-encumbered, and is
therefore not available in some purely open source browsers (e.g., Firefox and Chro‐
mium). Unfortunately, the less popular but patent-unencumbered OGG format is still
not available in Safari at the time of this writing.

For a more up-to-date roster of audio format support, see http://mzl.la/13kGelS.

Loading and Playing Sounds
Web Audio API makes a clear distinction between buffers and source nodes. The idea
of this architecture is to decouple the audio asset from the playback state. Taking a
record player analogy, buffers are like records and sources are like playheads, except
in the Web Audio API world, you can play the same record on any number of play‐
heads simultaneously! Because many applications involve multiple versions of the
same buffer playing simultaneously, this pattern is essential. For example, if you want
multiple bouncing ball sounds to fire in quick succession, you need to load the
bounce buffer only once and schedule multiple sources of playback [see “Multiple
Sounds with Variations” on page 32].

To load an audio sample into the Web Audio API, we can use an XMLHttpRequest and
process the results with context.decodeAudioData. This all happens asynchronously
and doesn’t block the main UI thread:

var request = new XMLHttpRequest();
request.open('GET', url, true);
request.responseType = 'arraybuffer';

// Decode asynchronously
request.onload = function() {

10 | Chapter 1: Fundamentals

http://mzl.la/13kGelS

 context.decodeAudioData(request.response, function(theBuffer) {
 buffer = theBuffer;
 }, onError);
}
request.send();

Audio buffers are only one possible source of playback. Other sources include direct
input from a microphone or line-in device or an <audio> tag among others (see
Chapter 7).

Once you’ve loaded your buffer, you can create a source node (AudioBufferSource
Node) for it, connect the source node into your audio graph, and call start(0) on the
source node. To stop a sound, call stop(0) on the source node. Note that both of
these function calls require a time in the coordinate system of the current audio con‐
text (see Chapter 2):

function playSound(buffer) {
 var source = context.createBufferSource();
 source.buffer = buffer;
 source.connect(context.destination);
 source.start(0);
}

Games often have background music playing in a loop. However, be careful about
being overly repetitive with your selection: if a player is stuck in an area or level, and
the same sample continuously plays in the background, it may be worthwhile to grad‐
ually fade out the track to prevent frustration. Another strategy is to have mixes of
various intensity that gradually crossfade into one another depending on the game
situation [see “Gradually Varying Audio Parameters” on page 16].

Putting It All Together
As you can see from the previous code listings, there’s a bit of setup to get sounds
playing in the Web Audio API. For a real game, consider implementing a JavaScript
abstraction around the Web Audio API. An example of this idea is the following Buf
ferLoader class. It puts everything together into a simple loader, which, given a set of
paths, returns a set of audio buffers. Here’s how such a class can be used:

window.onload = init;
var context;
var bufferLoader;

function init() {
 context = new webkitAudioContext();

 bufferLoader = new BufferLoader(
 context,
 [
 '../sounds/hyper-reality/br-jam-loop.wav',

Putting It All Together | 11

 '../sounds/hyper-reality/laughter.wav',
],
 finishedLoading
);

 bufferLoader.load();
}

function finishedLoading(bufferList) {
 // Create two sources and play them both together.
 var source1 = context.createBufferSource();
 var source2 = context.createBufferSource();
 source1.buffer = bufferList[0];
 source2.buffer = bufferList[1];

 source1.connect(context.destination);
 source2.connect(context.destination);
 source1.start(0);
 source2.start(0);
}

For a simple reference implementation of BufferLoader, take a look at http://webau
dioapi.com/samples/shared.js.

12 | Chapter 1: Fundamentals

http://webaudioapi.com/samples/shared.js
http://webaudioapi.com/samples/shared.js

CHAPTER 2

Perfect Timing and Latency

One of the strengths of the Web Audio API as compared to the <audio> tag is that it
comes with a low-latency precise-timing model.

Low latency is very important for games and other interactive applications since you
often need fast auditory response to user actions. If the feedback is not immediate,
the user will sense the delay, which will lead to frustration. In practice, due to imper‐
fections of human hearing, there is leeway for a delay of up to 20 ms or so, but the
number varies depending on many factors.

Precise timing enables you to schedule events at specific times in the future. This is
very important for scripted scenes and musical applications.

Timing Model
One of the key things that the audio context provides is a consistent timing model
and frame of reference for time. Importantly, this model is different from the one
used for JavaScript timers such as setTimeout, setInterval, and new Date(). It is
also different from the performance clock provided by window.performance.now().

All of the absolute times that you will be dealing with in the Web Audio API are in
seconds (not milliseconds!), in the coordinate system of the specified audio context.
The current time can be retrieved from the audio context via the currentTime prop‐
erty. Although the units are seconds, time is stored as a floating-point value with high
precision.

Precise Playback and Resume
The start() function makes it easy to schedule precise sound playback for games
and other time-critical applications. To get this working properly, ensure that your

13

sound buffers are pre-loaded [see “Loading and Playing Sounds” on page 10].
Without a pre-loaded buffer, you will have to wait an unknown amount of time for
the browser to fetch the sound file, and then for the Web Audio API to decode it. The
failure mode in this case is you want to play a sound at a precise instant, but the
buffer is still loading or decoding.

Sounds can be scheduled to play at a precise time by specifying the first (when)
parameter of the start() call. This parameter is in the coordinate system of the
AudioContext’s currentTime. If the parameter is less than the currentTime, it is
played immediately. Thus start(0) always plays sound immediately, but to schedule
sound in 5 seconds, you would call start(context.currentTime + 5).

Sound buffers can also be played from a specific time offset by specifying a second
parameter to the start() call, and limited to a specific duration with a third optional
parameter. For example, if we want to pause a sound and play it back from the paused
position, we can implement a pause by tracking the amount of time a sound has been
playing in the current session and also tracking the last offset in order to resume later:

// Assume context is a web audio context, buffer is a pre-loaded audio buffer.
var startOffset = 0;
var startTime = 0;

function pause() {
 source.stop();
 // Measure how much time passed since the last pause.
 startOffset += context.currentTime - startTime;
}

Once a source node has finished playing back, it can’t play back more. To play back
the underlying buffer again, you need to create a new source node (AudioBufferSour
ceNode) and call start():

function play() {
 startTime = context.currentTime;
 var source = context.createBufferSource();
 // Connect graph
 source.buffer = this.buffer;
 source.loop = true;
 source.connect(context.destination);
 // Start playback, but make sure we stay in bound of the buffer.
 source.start(0, startOffset % buffer.duration);
}

Though recreating the source node may seem inefficient at first, keep in mind that
source nodes are heavily optimized for this pattern. Remember that if you keep a
handle to the AudioBuffer, you don’t need to make another request to the asset to
play the same sound again. By having this AudioBuffer around, you have a clean sep‐
aration between buffer and player, and can easily play back multiple versions of the
same buffer overlapping in time. If you find yourself needing to repeat this pattern,

14 | Chapter 2: Perfect Timing and Latency

encapsulate playback with a simple helper function like playSound(buffer) in an
earlier code snippet.

Scheduling Precise Rhythms
The Web Audio API lets developers precisely schedule playback in the future. To
demonstrate this, let’s set up a simple rhythm track. Probably the simplest and most
widely known drumkit pattern is shown in Figure 2-1, in which a hihat is played
every eighth note, and the kick and snare are played on alternating quarter notes, in
4/4 time.

Figure 2-1. Sheet music for one of the most basic drum patterns

Assuming we have already loaded the kick, snare, and hihat buffers, the code to do
this is simple:

for (var bar = 0; bar < 2; bar++) {
 var time = startTime + bar * 8 * eighthNoteTime;
 // Play the bass (kick) drum on beats 1, 5
 playSound(kick, time);
 playSound(kick, time + 4 * eighthNoteTime);

 // Play the snare drum on beats 3, 7
 playSound(snare, time + 2 * eighthNoteTime);
 playSound(snare, time + 6 * eighthNoteTime);

 // Play the hihat every eighth note.
 for (var i = 0; i < 8; ++i) {
 playSound(hihat, time + i * eighthNoteTime);
 }
}

Once you’ve scheduled sound in the future, there is no way to unschedule that future
playback event, so if you are dealing with an application that quickly changes, sched‐
uling sounds too far into the future is not advisable. A good way of dealing with this
problem is to create your own scheduler using JavaScript timers and an event queue.
This approach is described in A Tale of Two Clocks.

Scheduling Precise Rhythms | 15

http://www.html5rocks.com/en/

Changing Audio Parameters
Many types of audio nodes have configurable parameters. For example, the GainNode
has a gain parameter that controls the gain multiplier for all sounds going through
the node. Specifically, a gain of 1 does not affect the amplitude, 0.5 halves it, and 2
doubles it [see “Volume, Gain, and Loudness” on page 21]. Let’s set up a graph as fol‐
lows:

// Create a gain node.
var gainNode = context.createGain();
// Connect the source to the gain node.
source.connect(gainNode);
// Connect the gain node to the destination.
gainNode.connect(context.destination);

In the context of the API, audio parameters are represented as AudioParam instances.
The values of these nodes can be changed directly by setting the value attribute of a
param instance:

// Reduce the volume.
gainNode.gain.value = 0.5;

The values can also be changed later, via precisely scheduled parameter changes in
the future. We could also use setTimeout to do this scheduling, but this is not precise
for several reasons:

1. Millisecond-based timing may not be enough precision.
2. The main JS thread may be busy with high-priority tasks like page layout,

garbage collection, and callbacks from other APIs, which delays timers.
3. The JS timer is affected by tab state. For example, interval timers in backgroun‐

ded tabs fire more slowly than if the tab is in the foreground.

Instead of setting the value directly, we can call the setValueAtTime() function,
which takes a value and a start time as arguments. For example, the following snippet
sets the gain value of a GainNode in one second:

gainNode.gain.setValueAtTime(0.5, context.currentTime + 1);

Gradually Varying Audio Parameters
In many cases, rather than changing a parameter abruptly, you would prefer a more
gradual change. For example, when building a music player application, we want to
fade the current track out, and fade the new one in, to avoid a jarring transition.
While you can achieve this with multiple calls to setValueAtTime as described previ‐
ously, this is inconvenient.

16 | Chapter 2: Perfect Timing and Latency

The Web Audio API provides a convenient set of RampToValue methods to gradually
change the value of any parameter. These functions are linearRampToValueAtTime()
and exponentialRampToValueAtTime(). The difference between these two lies in the
way the transition happens. In some cases, an exponential transition makes more
sense, since we perceive many aspects of sound in an exponential manner.

Let’s take an example of scheduling a crossfade in the future. Given a playlist, we can
transition between tracks by scheduling a gain decrease on the currently playing
track, and a gain increase on the next one, both slightly before the current track fin‐
ishes playing:

function createSource(buffer) {
 var source = context.createBufferSource();
 var gainNode = context.createGainNode();
 source.buffer = buffer;
 // Connect source to gain.
 source.connect(gainNode);
 // Connect gain to destination.
 gainNode.connect(context.destination);

 return {
 source: source,
 gainNode: gainNode
 };
}

function playHelper(buffers, iterations, fadeTime) {
 var currTime = context.currentTime;
 for (var i = 0; i < iterations; i++) {
 // For each buffer, schedule its playback in the future.
 for (var j = 0; j < buffers.length; j++) {
 var buffer = buffers[j];
 var duration = buffer.duration;
 var info = createSource(buffer);
 var source = info.source;
 var gainNode = info.gainNode;
 // Fade it in.
 gainNode.gain.linearRampToValueAtTime(0, currTime);
 gainNode.gain.linearRampToValueAtTime(1, currTime + fadeTime);
 // Then fade it out.
 gainNode.gain.linearRampToValueAtTime(1, currTime + duration-fadeTime);
 gainNode.gain.linearRampToValueAtTime(0, currTime + duration);

 // Play the track now.
 source.noteOn(currTime);

 // Increment time for the next iteration.
 currTime += duration - fadeTime;
 }
 }
}

Gradually Varying Audio Parameters | 17

Custom Timing Curves
If neither a linear nor an exponential curve satisfies your needs, you can also specify
your own value curve via an array of values using the setValueCurveAtTime func‐
tion. With this function, you can define a custom timing curve by providing an array
of timing values. It’s a shortcut for making a bunch of setValueAtTime calls, and
should be used in this case. For example, if we want to create a tremolo effect, we can
apply an oscillating curve to the gain AudioParam of a GainNode, as in Figure 2-2.

Figure 2-2. A value curve oscillating over time

The oscillating curve in the previous figure could be implemented with the following
code:

var DURATION = 2;
var FREQUENCY = 1;
var SCALE = 0.4;

// Split the time into valueCount discrete steps.
var valueCount = 4096;
// Create a sinusoidal value curve.
var values = new Float32Array(valueCount);
for (var i = 0; i < valueCount; i++) {
 var percent = (i / valueCount) * DURATION*FREQUENCY;
 values[i] = 1 + (Math.sin(percent * 2*Math.PI) * SCALE);
 // Set the last value to one, to restore playbackRate to normal at the end.
 if (i == valueCount - 1) {
 values[i] = 1;
 }
}
// Apply it to the gain node immediately, and make it last for 2 seconds.
this.gainNode.gain.setValueCurveAtTime(values, context.currentTime, DURATION);

18 | Chapter 2: Perfect Timing and Latency

In the previous snippet, we’ve manually computed a sine curve and applied it to the
gain parameter to create a tremolo sound effect. It took a bit of math, though.

This brings us to a very nifty feature of the Web Audio API that lets us build effects
like tremolo more easily. We can take any audio stream that would ordinarily be con‐
nected into another AudioNode, and instead connect it into any AudioParam. This
important idea is the basis for many sound effects. The previous code is actually an
example of such an effect called a low frequency oscillator (LFO) applied to the gain,
which is used to build effects such as vibrato, phasing, and tremolo. By using the
oscillator node [see “Oscillator-Based Direct Sound Synthesis” on page 34], we can
easily rebuild the previous example as follows:

// Create oscillator.
var osc = context.createOscillator();
osc.frequency.value = FREQUENCY;
var gain = context.createGain();
gain.gain.value = SCALE;
osc.connect(gain);
gain.connect(this.gainNode.gain);

// Start immediately, and stop in 2 seconds.
osc.start(0);
osc.stop(context.currentTime + DURATION);

The latter approach is more efficient than creating a custom value curve and saves us
from having to compute sine functions manually by creating a loop to repeat the
effect.

Custom Timing Curves | 19

CHAPTER 3

Volume and Loudness

Once we are ready to play a sound, whether from an AudioBuffer or from other
sources, one of the most basic parameters we can change is the loudness of the sound.

The main way to affect the loudness of a sound is using GainNodes. As previously
mentioned, these nodes have a gain parameter, which acts as a multiplier on the
incoming sound buffer. The default gain value is one, which means that the input
sound is unaffected. Values between zero and one reduce the loudness, and values
greater than one amplify the loudness. Negative gain (values less than zero) inverts
the waveform (i.e., the amplitude is flipped).

CRITICAL THEORY
Volume, Gain, and Loudness

Let’s start with some definitions. Loudness is a subjective measure of how intensely
our ears perceive a sound. Volume is a measure of the physical amplitude of a sound
wave. Gain is a scale multiplier affecting a sound’s amplitude as it is being processed.

In other words, when undergoing a gain, the amplitude of a sound wave is scaled,
with the gain value used as a multiplier. For example, while a gain value of one will
not affect the sound wave at all, Figure 3-1 illustrates what happens to a sound wave if
you send it through a gain factor of two.

21

Figure 3-1. Original soundform on the left, gain 2 soundform on the right

Generally speaking, power in a wave is measured in decibels (abbreviated dB), or one
tenth of a Bel, named after Alexander Graham Bell. Decibels are a relative, logarith‐
mic unit that compare the level being measured to some reference point. There are
many different reference points for measuring dB, and each reference point is indica‐
ted with a suffix on the unit. Saying that a signal is some number of dB is meaningless
without a reference point! For example, dBV, dBu, and dBm are all useful for measur‐
ing electrical signals. Since we are dealing with digital audio, we are mainly concerned
with two measures: dBFS and dBSPL.

The first is dBFS, or decibels full scale. The highest possible level of sound produced
by audio equipment is 0 dBFS. All other levels are expressed in negative numbers.

dBFS is described mathematically as:

dBFS = 20 * log([sample level] / [max level])

The maximum dBFS value in a 16-bit audio system is:

max = 20 * log(1111 1111 1111 1111/1111 1111 1111 1111) = log(1) = 0

Note that the maximum dBFS value will always be 0 by definition, since log(1) = 0.
Similarly, the minimum dBFS value in the same system is:

min = 20 * log(0000 0000 0000 0001/1111 1111 1111 1111) = -96 dBFS

dBFS is a measure of gain, not volume. You can play a 0-dBFS signal through your
stereo with the stereo gain set very low and hardly be able to hear anything. Con‐
versely, you can play a −30-dBFS signal with the stereo gain maxed and blow your
eardrums away.

That said, you’ve probably heard someone describe the volume of a sound in decibels.
Technically speaking, they were referring to dBSPL, or decibels relative to sound pres‐
sure level. Here, the reference point is 0.000002 newtons per square meter (roughly
the sound of a mosquito flying 3 m away). There is no upper value to dBSPL, but in
practice, we want to stay below levels of ear damage (~120 dBSPL) and well below the
threshold of pain (~150 dBSPL). The Web Audio API does not use dBSPL, since the

22 | Chapter 3: Volume and Loudness

final volume of the sound depends on the OS gain and the speaker gain, and only
deals with dBFS.

The logarithmic definition of decibels correlates somewhat to the way our ears per‐
ceive loudness, but loudness is still a very subjective concept. Comparing the dB val‐
ues of a sound and the same sound with a 2x gain, we can see that we’ve gained about
6 dB:

diff = 20 * log(2/2^16) - 20 * log(1/2^16) = 6.02 dB

Every time we add 6 dB or so, we actually double the amplitude of the signal. Com‐
paring the sound at a rock concert (~110 dBSPL) to your alarm clock (~80 dBSPL),
the difference between the two is (110 − 80)/6 dB, or roughly 5 times louder, with a
gain multiplier of 25 = 32x. A volume knob on a stereo is therefore also calibrated to
increase the amplitude exponentially. In other words, turning the volume knob by 3
units multiplies the amplitude of the signal roughly by a factor of 23 or 8 times. In
practice, the exponential model described here is merely an approximation to the way
our ears perceive loudness, and audio equipment manufacturers often have their own
custom gain curves that are neither linear nor exponential.

Equal Power Crossfading
Often in a game setting, you have a situation where you want to crossfade between
two environments that have different sounds associated with them. However, when to
crossfade and by how much is not known in advance; perhaps it varies with the posi‐
tion of the game avatar, which is controlled by the player. In this case, we cannot do
an automatic ramp.

In general, doing a straightforward, linear fade will result in the following graph. It
can sound unbalanced because of a volume dip between the two samples, as shown in
Figure 3-2.

Figure 3-2. A linear crossfade between two tracks

To address this issue, we use an equal power curve, in which the corresponding gain
curves are neither linear nor exponential, and intersect at a higher amplitude

Equal Power Crossfading | 23

(Figure 3-3). This helps avoid a dip in volume in the middle part of the crossfade,
when both sounds are mixed together equally.

Figure 3-3. An equal power crossfade sounds much better

The graph in Figure 3-3 can be generated with a bit of math:

function equalPowerCrossfade(percent) {
 // Use an equal-power crossfading curve:
 var gain1 = Math.cos(percent * 0.5*Math.PI);
 var gain2 = Math.cos((1.0 - percent) * 0.5*Math.PI);
 this.ctl1.gainNode.gain.value = gain1;
 this.ctl2.gainNode.gain.value = gain2;
}

CRITICAL THEORY
Clipping and Metering

Like images exceeding the boundaries of a canvas, sounds can also be clipped if the
waveform exceeds its maximum level. The distinct distortion that this produces is
obviously undesirable. Audio equipment often has indicators that show the magni‐
tude of audio levels to help engineers and listeners produce output that does not clip.
These indicators are called meters (Figure 3-4) and often have a green zone (no clip‐
ping), yellow zone (close to clipping), and red zone (clipping).

24 | Chapter 3: Volume and Loudness

Figure 3-4. A meter in a typical receiver

Clipped sound looks bad on a monitor and sounds no better. It’s important to listen
for harsh distortions, or conversely, overly subdued mixes that force your listeners to
crank up the volume. If you’re in either of these situations, read on!

Using Meters to Detect and Prevent Clipping
Since multiple sounds playing simultaneously are additive with no level reduction,
you may find yourself in a situation where you are exceeding past the threshold of
your speaker’s capability. The maximum level of sound is 0 dBFS, or 216, for 16-bit
audio. In the floating point version of the signal, these bit values are mapped to [−1,
1]. The waveform of a sound that’s being clipped looks something like Figure 3-5. In
the context of the Web Audio API, sounds clip if the values sent to the destination
node lie outside of the range. It’s a good idea to leave some room (called headroom) in
your final mix so that you aren’t too close to the clipping threshold.

Figure 3-5. A diagram of a waveform being clipped

Using Meters to Detect and Prevent Clipping | 25

In addition to close listening, you can check whether or not you are clipping your
sound programmatically by putting a script processor node into your audio graph.
Clipping may occur if any of the PCM values are out of the acceptable range. In this
sample, we check both left and right channels for clipping, and if clipping is detected,
save the last clipping time:

function onProcess(e) {
 var leftBuffer = e.inputBuffer.getChannelData(0);
 var rightBuffer = e.inputBuffer.getChannelData(1);
 checkClipping(leftBuffer);
 checkClipping(rightBuffer);
}

function checkClipping(buffer) {
 var isClipping = false;
 // Iterate through buffer to check if any of the |values| exceeds 1.
 for (var i = 0; i < buffer.length; i++) {
 var absValue = Math.abs(buffer[i]);
 if (absValue >= 1.0) {
 isClipping = true;
 break;
 }
 }
 this.isClipping = isClipping;
 if (isClipping) {
 lastClipTime = new Date();
 }
}

An alternative implementation of metering could poll a real-time analyzer in the
audio graph for getFloatFrequencyData at render time, as determined by requestA
nimationFrame (see Chapter 5). This approach is more efficient, but misses a lot of
the signal (including places where it potentially clips), since rendering happens most
at 60 times a second, whereas the audio signal changes far more quickly.

The way to prevent clipping is to reduce the overall level of the signal. If you are clip‐
ping, apply some fractional gain on a master audio gain node to subdue your mix to a
level that prevents clipping. In general, you should tweak gains to anticipate the worst
case, but getting this right is more of an art than a science. In practice, since the
sounds playing in your game or interactive application may depend on a huge variety
of factors that are decided at runtime, it can be difficult to pick the master gain value
that prevents clipping in all cases. For this unpredictable case, look to dynamics com‐
pression, which is discussed in “Dynamics Compression” on page 28.

26 | Chapter 3: Volume and Loudness

CRITICAL THEORY
Understanding Dynamic Range

In audio, dynamic range refers to the difference between the loudest and quietest parts
of a sound. The amount of dynamic range in musical pieces varies greatly depending
on genre. Classical music has large dynamic range and often features very quiet sec‐
tions followed by relatively loud ones. Many popular genres like rock and electronica
tend to have a small dynamic range, and are uniformly loud because of an apparent
competition (known pejoratively as the “Loudness War”) to increase the loudness of
tracks to meet consumer demands. This uniform loudness is generally achieved by
using dynamic range compression.

That said, there are many legitimate uses of compression. Sometimes recorded music
has such a large dynamic range that there are sections that sound so quiet or loud that
the listener constantly needs to have a finger on the volume knob. Compression can
quiet down the loud parts while making the quiet parts audible. Figure 3-6 illustrates
a waveform (above), and then the same waveform with compression applied (below).
You can see that the sound is louder overall, and there is less variance in the ampli‐
tude.

Figure 3-6. The effects of dynamics compression

For games and interactive applications, you may not know beforehand what your
sound output will look like. Because of games’ dynamic nature, you may have very
quiet periods (e.g., stealthy sneaking) followed by very loud ones (e.g., a warzone). A
compressor node can be helpful in suddenly loud situations for reducing the likeli‐
hood of clipping [see “Clipping and Metering” on page 24].

Compressors can be modeled with a compression curve with several parameters, all
of which can be tweaked with the Web Audio API. Two of the main parameters of a
compressor are threshold and ratio. Threshold refers to the lowest volume at which a
compressor starts reducing dynamic range. Ratio determines how much gain reduc‐

Using Meters to Detect and Prevent Clipping | 27

tion is applied by the compressor. Figure 3-7 illustrates the effect of threshold and
various compression ratios on the compression curve.

Figure 3-7. A sample compression curve with basic parameters

Dynamics Compression
Compressors are available in the Web Audio API as DynamicsCompressorNodes.
Using moderate amounts of dynamics compression in your mix is generally a good
idea, especially in a game setting where, as previously discussed, you don’t know
exactly what sounds will play and when. One case where compression should be avoi‐
ded is when dealing with painstakingly mastered tracks that have been tuned to
sound “just right” already, which are not being mixed with any other tracks.

Implementing dynamic compression in the Web Audio API is simply a matter of
including a dynamics compressor node in your audio graph, generally as the last
node before the destination:

var compressor = context.createDynamicsCompressor();
mix.connect(compressor);
compressor.connect(context.destination);

The node can be configured with some additional parameters as described in the
theory section, but the defaults are quite good for most purposes. For more informa‐
tion about configuring the compression curve, see the Web Audio API specification.

28 | Chapter 3: Volume and Loudness

https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html

CHAPTER 4

Pitch and the Frequency Domain

So far we have learned about some basic properties of sound: timing and volume. To
do more complex things, such as sound equalization (e.g., increasing the bass and
decreasing the treble), we need more complex tools. This section explains some of the
tools that allow you to do these more interesting transformations, which include the
ability to simulate different sorts of environments and manipulate sounds directly
with JavaScript.

CRITICAL THEORY
Basics of Musical Pitch

Music consists of many sounds played simultaneously. Sounds produced by musical
instruments can be very complex, as the sound bounces through various parts of the
instrument and is shaped in unique ways. However, these musical tones all have one
thing in common: physically, they are periodic waveforms. This periodicity is per‐
ceived by our ears as pitch. The pitch of a note is measured in frequency, or the num‐
ber of times the wave pattern repeats every second, specified in hertz. The frequency
is the time (in seconds) between the crests of the wave. As illustrated in Figure 4-1, if
we halve the wave in the time dimension, we end up with a correspondingly doubled
frequency, which sounds to our ears like the same tone, one octave higher. Con‐
versely, if we extend the wave’s frequency by two, this brings the tone an octave down.
Thus, pitch (like volume) is perceived exponentially by our ears: at every octave, the
frequency doubles.

29

Figure 4-1. Graph of perfect A4 and A5 tones side by side

Octaves are split up into 12 semitones. Each adjacent semitone pair has an identical
frequency ratio (at least in equal-tempered tunings). In other words, the ratios of the
frequencies of A4 to A#4 are identical to A#4 to B.

Figure 4-1 shows how we would derive the ratio between every successive semitone,
given that:

1. To transpose a note up an octave, we double the frequency of the note.
2. Each octave is split up into 12 semitones, which, in an equal tempered tuning,

have identical frequency ratios.

Let’s define a f 0 to be some frequency, and f 1 to be that same note one octave higher.
we know that this is the relationship between them:

f 1 = 2 * f 0

Next, let k be the fixed multiplier between any two adjacent semitones. Since there are
12 semitones in an octave, we also know the following:

f 1 = f 0 * k * k * k * . . . * k 12x = f 0 * k12

Solving the system of equations above, we have the following:

2 * f 0 = f 0 * k12

Solving for k:

k = 2 1/12 = 1 . 0595 . . .

30 | Chapter 4: Pitch and the Frequency Domain

Conveniently, all of this semitone-related offsetting isn’t really necessary to do man‐
ually, since many audio environments (the Web Audio API included) include a notion
of detune, which linearizes the frequency domain. Detune is measured in cents, with
each octave consisting of 1200 cents, and each semitone consisting of 100 cents. By
specifying a detune of 1200, you move up an octave. Specifying a detune of −1200
moves you down an octave.

Pitch and playbackRate
The Web Audio API provides a playbackRate parameter on each AudioSourceNode.
This value can be set to affect the pitch of any sound buffer. Note that the pitch as
well as the duration of the sample will be affected in this case. There are sophisticated
methods that try to affect pitch independent of duration, but this is quite difficult to
do in a general-purpose way without introducing blips, scratches, and other undesira‐
ble artifacts to the mix.

As discussed in “Basics of Musical Pitch” on page 29, to compute the frequencies of
successive semitones, we simply multiply the frequency by the semitone ratio 21/12.
This is very useful if you are developing a musical instrument or using pitch for ran‐
domization in a game setting. The following code plays a tone at a given frequency
offset in semitones:

function playNote(semitones) {
 // Assume a new source was created from a buffer.
 var semitoneRatio = Math.pow(2, 1/12);
 source.playbackRate.value = Math.pow(semitoneRatio, semitones);
 source.start(0);
}

As we discussed earlier, our ears perceive pitch exponentially. Treating pitch as an
exponential quantity can be inconvenient, since we often deal with awkward values
such as the twelfth root of two. Instead of doing that, we can use the detune parame‐
ter to specify our offset in cents. Thus you can rewrite the above function using
detune in an easier way:

function playNote(semitones) {
 // Assume a new source was created from a buffer.
 source.detune.value = semitones * 100;
 source.start(0);
}

If you pitch shift by too many semitones (e.g., by calling playNote(24);), you will
start to hear distortions. Because of this, digital pianos include multiple samples for
each instrument. Good digital pianos avoid pitch bending at all, and include a sepa‐
rate sample recorded specifically for each key. Great digital pianos often include mul‐

Pitch and playbackRate | 31

tiple samples for each key, which are played back depending on the velocity of the key
press.

Multiple Sounds with Variations
A key feature of sound effects in games is that there can be many of them simultane‐
ously. Imagine you’re in the middle of a gunfight with multiple actors shooting
machine guns. Each machine gun fires many times per second, causing tens of sound
effects to be played at the same time. Playing back sound from multiple, precisely-
timed sources simultaneously is one place the Web Audio API really shines.

Now, if all of the machine guns in your game sounded exactly the same, that would be
pretty boring. Of course the sound would vary based on distance from the target and
relative position [more on this later in “Spatialized Sound” on page 49], but even that
might not be enough. Luckily the Web Audio API provides a way to easily tweak the
previous example in at least two simple ways:

1. With a subtle shift in time between bullets firing
2. By changing pitch to better simulate the randomness of the real world

Using our knowledge of timing and pitch, implementing these two effects is pretty
straightforward:

function shootRound(numberOfRounds, timeBetweenRounds) {
 var time = context.currentTime;
 // Make multiple sources using the same buffer and play in quick succession.
 for (var i = 0; i < numberOfRounds; i++) {
 var source = this.makeSource(bulletBuffer);
 source.playbackRate.value = 1 + Math.random() * RANDOM_PLAYBACK;
 source.start(time + i * timeBetweenRounds + Math.random() * RANDOM_VOLUME);
 }
}

The Web Audio API automatically merges multiple sounds playing at once, essen‐
tially just adding the waveforms together. This can cause problems such as clipping,
which we discuss in “Clipping and Metering” on page 24.

This example adds some variety to AudioBuffers loaded from sound files. In some
cases, it is desirable to have fully synthesized sound effects and no buffers at all [see
“Procedurally Generated Sound” on page 45].

CRITICAL THEORY
Understanding the Frequency Domain

So far in our theoretical excursions, we’ve only examined sound as a function of pres‐
sure as it varies over time. Another useful way of looking at sound is to plot ampli‐

32 | Chapter 4: Pitch and the Frequency Domain

tude and see how it varies over frequency. This results in graphs where the domain
(x-axis) is in units of frequency (Hz). Graphs of sound plotted this way are said to be
in the frequency domain.

The relationship between the time-domain and frequency-domain graphs is based on
the idea of fourier decomposition. As we saw earlier, sound waves are often cyclical in
nature. Mathematically, periodic sound waves can be seen as the sum of multiple sim‐
ple sine waves of different frequency and amplitude. The more such sine waves we
add together, the better an approximation of the original function we can get. We can
take a signal and find its component sine waves by applying a fourier transformation,
the details of which are outside the scope of this book. Many algorithms exist to get
this decomposition too, the best known of which is the Fast Fourier Transform (FFT).
Luckily, the Web Audio API comes with an implementation of this algorithm. We will
discuss how it works later [see “Frequency Analysis” on page 37].

In general, we can take a sound wave, figure out the constituent sine wave break‐
down, and plot the (frequency, amplitude) as points on a new graph to get a fre‐
quency domain plot. Figure 4-2 shows a pure A note at 440 Hz (called A4).

Figure 4-2. A perfectly sinusoidal 1-KHz sound wave represented in both time and fre‐
quency domains

Looking at the frequency domain can give a better sense of the qualities of the sound,
including pitch content, amount of noise, and much more. Advanced algorithms like
pitch detection can be built on top of the frequency domain. Sound produced by real
musical instruments have overtones, so an A4 played by a piano has a frequency
domain plot that looks (and sounds) very different from the same A4 pitch played by
a trumpet. Regardless of the complexity of sounds, the same fourier decomposition

Multiple Sounds with Variations | 33

ideas apply. Figure 4-3 shows a more complex fragment of a sound in both the time
and frequency domains.

Figure 4-3. A complex sound wave shown in both time and frequency domains

These graphs behave quite differently over time. If you were to very slowly play back
the sound in Figure 4-3 and observe it moving along each graph, you would notice
the time domain graph (on the left) progressing left to right. The frequency domain
graph (on the right) is the frequency analysis of the waveform at a moment in time, so
it might change more quickly and less predictably.

Importantly, frequency-domain analysis is still useful when the sound examined is
not perceived as having a specific pitch. Wind, percussive sources, and gunshots have
distinct representations in the frequency domain. For example, white noise has a flat
frequency domain spectrum, since each frequency is equally represented.

Oscillator-Based Direct Sound Synthesis
As we discussed early in this book, digital sound in the Web Audio API is represented
as an array of floats in AudioBuffers. Most of the time, the buffer is created by load‐
ing a sound file, or on the fly from some sound stream. In some cases, we might want
to synthesize our own sounds. We can do this by creating audio buffers programmati‐
cally using JavaScript, which simply evaluate a mathematical function at regular peri‐
ods and assign values to an array. By taking this approach, we can manually change
the amplitude and frequency of our sine wave, or even concatenate multiple sine
waves together to create arbitrary sounds [recall the principles of fourier transforma‐
tions from “Understanding the Frequency Domain” on page 32].

Though possible, doing this work in JavaScript is inefficient and complex. Instead,
the Web Audio API provides primitives that let you do this with oscillators: Oscilla
torNode. These nodes have configurable frequency and detune [see the “Basics of
Musical Pitch” on page 29]. They also have a type that represents the kind of wave to

34 | Chapter 4: Pitch and the Frequency Domain

generate. Built-in types include the sine, triangle, sawtooth, and square waves, as
shown in Figure 4-4.

Figure 4-4. Types of basic soundwave shapes that the oscillator can generate

Oscillators can easily be used in audio graphs in place of AudioBufferSourceNodes.
An example of this follows:

function play(semitone) {
 // Create some sweet sweet nodes.
 var oscillator = context.createOscillator();
 oscillator.connect(context.destination);
 // Play a sine type curve at A4 frequency (440hz).
 oscillator.frequency.value = 440;
 oscillator.detune.value = semitone * 100;
 // Note: this constant will be replaced with "sine".
 oscillator.type = oscillator.SINE;
 oscillator.start(0);
}

In addition to these basic wave types, you can create a custom wave table for your
oscillator by using harmonic tables. This lets you efficiently create wave shapes that
are much more complex than the previous ones. This topic is very important for
musical synthesis applications, but is outside of the scope of this book.

Oscillator-Based Direct Sound Synthesis | 35

CHAPTER 5

Analysis and Visualization

So far we’ve only talked about audio synthesis and processing, but that is only half of
the functionality that the Web Audio API provides. The other half, audio analysis, is
all about understanding what the sound that is being played is like. The canonical
example of this feature is visualization, but there are many other applications far out‐
side the scope of this book, including pitch detection, rhythm detection, and speech
recognition.

This is an important topic for us as game developers and interactive application
builders for a couple of reasons. Firstly, a good visual analyzer can act as a sort of
debugging tool (obviously in addition to your ears and a good metering setup) for
tweaking sounds to be just right. Secondly, visualization is critical for any games and
applications related to music, from games like Guitar Hero to software like Garage‐
Band.

Frequency Analysis
The main way of doing sound analysis with the Web Audio API is to use AnalyserNo
des. These nodes do not change the sound in any way, and can be placed anywhere in
your audio context. Once this node is in your graph, it provides two main ways for
you to inspect the sound wave: over the time domain and over the frequency domain.

The results you get are based on FFT analysis over a certain buffer size. We have a few
knobs to customize the output of the node:

fftSize

This defines the buffer size that is used to perform the analysis. It must be a
power of two. Higher values will result in more fine-grained analysis of the sig‐
nal, at the cost of some performance loss.

37

frequencyBinCount

This is a read-only property, set automatically as fftSize/2.

smoothingTimeConstant

This is a value between zero and one. A value of one causes a large moving aver‐
age window and smoothed results. A value of zero means no moving average,
and quickly fluctuating results.

The basic setup is to insert the analyzer node into the interesting part of our audio
graph:

// Assume that node A is ordinarily connected to B.
var analyser = context.createAnalyser();
A.connect(analyser);
analyser.connect(B);

Then we can get frequency or time domain arrays as follows:

var freqDomain = new Float32Array(analyser.frequencyBinCount);
analyser.getFloatFrequencyData(freqDomain);

In the previous example, freqDomain is an array of 32-bit floats corresponding to the
frequency domain. These values are normalized to be between zero and one. The
indexes of the output can be mapped linearly between zero and the nyquist frequency,
which is defined to be half of the sampling rate (available in the Web Audio API via
context.sampleRate). The following snippet maps from frequency to the correct
bucket in the array of frequencies:

function getFrequencyValue(frequency) {
 var nyquist = context.sampleRate/2;
 var index = Math.round(frequency/nyquist * freqDomain.length);
 return freqDomain[index];
}

If we are analyzing a 1,000-Hz sine wave, for example, we would expect that getFre
quencyValue(1000) would return a peak value in the graph, as shown in Figure 5-1.

The frequency domain is also available in 8-bit unsigned units via the getByteFre
quencyData call. The values of these integers is scaled to fit between minDecibels and
maxDecibels (in dBFS) properties on the analyzer node, so these parameters can be
tweaked to scale the output as desired.

38 | Chapter 5: Analysis and Visualization

Figure 5-1. A 1,000-Hz tone being visualized (the full domain extends from 0 to 22,050
Hz)

Animating with requestAnimationFrame
If we want to build a visualization for our soundform, we need to periodically query
the analyzer, process the results, and render them. We can do this by setting up a
JavaScript timer like setInterval or setTimeout, but there’s a better way: requestA
nimationFrame. This API lets the browser incorporate your custom draw function
into its native rendering loop, which is a great performance improvement. Instead of
forcing it to draw at specific intervals and contending with the rest of the things a
browser does, you just request it to be placed in the queue, and the browser will get to
it as quickly as it can.

Because the requestAnimationFrame API is still experimental, we need to use the
prefixed version depending on user agent, and fall back to a rough equivalent: setTi
meout. The code for this is as follows:

window.requestAnimationFrame = (function(){
return window.requestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.mozRequestAnimationFrame ||
 window.oRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 function(callback){
 window.setTimeout(callback, 1000 / 60);
};
})();

Animating with requestAnimationFrame | 39

Once we have this requestAnimationFrame function defined, we should use it to
query the analyzer node to give us detailed information about the state of the audio
stream.

Visualizing Sound
Putting it all together, we can set up a render loop that queries and renders the ana‐
lyzer for its current frequency analysis as before, into a freqDomain array:

var freqDomain = new Uint8Array(analyser.frequencyBinCount);
analyser.getByteFrequencyData(freqDomain);
for (var i = 0; i < analyser.frequencyBinCount; i++) {
 var value = freqDomain[i];
 var percent = value / 256;
 var height = HEIGHT * percent;
 var offset = HEIGHT - height - 1;
 var barWidth = WIDTH/analyser.frequencyBinCount;
 var hue = i/analyser.frequencyBinCount * 360;
 drawContext.fillStyle = 'hsl(' + hue + ', 100%, 50%)';
 drawContext.fillRect(i * barWidth, offset, barWidth, height);
}

We can do a similar thing for the time-domain data as well:

var timeDomain = new Uint8Array(analyser.frequencyBinCount);
analyser.getByteTimeDomainData(freqDomain);
for (var i = 0; i < analyser.frequencyBinCount; i++) {
 var value = timeDomain[i];
 var percent = value / 256;
 var height = HEIGHT * percent;
 var offset = HEIGHT - height - 1;
 var barWidth = WIDTH/analyser.frequencyBinCount;
 drawContext.fillStyle = 'black';
 drawContext.fillRect(i * barWidth, offset, 1, 1);
}

This code plots time-domain values using HTML5 canvas, creating a simple visual‐
izer that renders a graph of the waveform on top of the colorful bar graph, which rep‐
resents frequency-domain data. The result is a canvas output that looks like
Figure 5-2, and changes with time.

40 | Chapter 5: Analysis and Visualization

Figure 5-2. A screenshot of a visualizer in action

Our approach to visualization misses a lot of data. For music visualization purposes,
that’s fine. If, however, we want to perform a comprehensive analysis of the whole
audio buffer, we should look to other methods.

Visualizing Sound | 41

CHAPTER 6

Advanced Topics

This chapter covers topics that are very important, but slightly more complex than
the rest of the book. We will dive into adding effects to sounds, generating synthetic
sound effects without any audio buffers at all, simulating effects of different acoustic
environments, and spatializing sound in 3D space.

CRITICAL THEORY
Biquad Filters

A filter can emphasize or de-emphasize certain parts of the frequency spectrum of a
sound. Visually, it can be shown as a graph over the frequency domain called a fre‐
quency response graph (see Figure 6-1). For each frequency, the higher the value of the
graph, the more emphasis is placed on that part of the frequency range. A graph slop‐
ing downward places more emphasis on low frequencies and less on high frequencies.

Web Audio filters can be configured with three parameters: gain, frequency, and a
quality factor (also known as Q). These parameters all affect the frequency response
graph differently.

There are many kinds of filters that can be used to achieve certain kinds of effects:

Low-pass filter
Makes sounds more muffled

High-pass filter
Makes sounds more tinny

Band-pass filter
Cuts off lows and highs (e.g., telephone filter)

43

Low-shelf filter
Affects the amount of bass in a sound (like the bass knob on a stereo)

High-shelf filter
Affects the amount of treble in a sound (like the treble knob on a stereo)

Peaking filter
Affects the amount of midrange in a sound (like the mid knob on a stereo)

Notch filter
Removes unwanted sounds in a narrow frequency range

All-pass filter
Creates phaser effects

Figure 6-1. Frequency response graph for a low-pass filter

All of these biquad filters stem from a common mathematical model and can all be
graphed like the low-pass filter in Figure 6-1. More details about these filters can be
found in more mathematically demanding books such as Real Sound Synthesis for
Interactive Applications by Perry R. Cook (A K Peters, 2002), which I highly recom‐
mend reading if you are interested in audio fundamentals.

Adding Effects via Filters
Using the Web Audio API, we can apply the filters discussed above using BiquadFil
terNodes. This type of audio node is very commonly used to build equalizers and
manipulate sounds in interesting ways. Let’s set up a simple low-pass filter to elimi‐
nate low frequency noise from a sound sample:

44 | Chapter 6: Advanced Topics

// Create a filter
var filter = context.createBiquadFilter();
// Note: the Web Audio spec is moving from constants to strings.
// filter.type = 'lowpass';
filter.type = filter.LOWPASS;
filter.frequency.value = 100;
// Connect the source to it, and the filter to the destination.

The BiquadFilterNode has support for all of the commonly used second-order filter
types. We can configure these nodes with the same parameters as discussed in the
previous section, and also visualize the frequency response graphs by using the get
FrequencyResponse method on the node. Given an array of frequencies, this function
returns an array of magnitudes of responses corresponding to each frequency.

Chris Wilson and Chris Rogers put together a great visualizer sample (Figure 6-2)
that shows the frequency responses of all of the filter types available in the Web Audio
API.

Figure 6-2. A graph of the frequency response of a low-pass filter with parameters

Procedurally Generated Sound
Up to now, we have been assuming that your game’s sound sources are static. An
audio designer creates a bunch of assets and hands them over to you. Then, you play
them back with some parameterization depending on local conditions (for example,
the room ambiance and relative positions of sources and listeners). This approach has
a few disadvantages:

1. Sound assets will be very large. This is especially bad on the Web, where instead
of loading from a hard drive, you load from a network (at least the first time),
which is roughly an order of magnitude slower.

2. Even with many assets and tweaks to each, there is limited variety.
3. You need to find assets by scouring sound effects libraries, and then maybe worry

about royalties. Plus, chances are, any given sound effect is already being used in
other applications, so your users have unintended associations.

Procedurally Generated Sound | 45

We can use the Web Audio API to fully generate sound procedurally. For example,
let’s simulate a gun firing. We begin with a buffer of white noise, which we can gener‐
ate with a ScriptProcessorNode as follows:

function WhiteNoiseScript() {
 this.node = context.createScriptProcessor(1024, 1, 2);
 this.node.onaudioprocess = this.process;
}

WhiteNoiseScript.prototype.process = function(e) {
 var L = e.outputBuffer.getChannelData(0);
 var R = e.outputBuffer.getChannelData(1);
 for (var i = 0; i < L.length; i++) {
 L[i] = ((Math.random() * 2) - 1);
 R[i] = L[i];
 }
};

For more information on ScriptProcessorNodes, see “Audio Processing with Java‐
Script” on page 51.

This code is not an efficient implementation because JavaScript is required to con‐
stantly and dynamically create a stream of white noise. To increase efficiency, we can
programmatically generate a mono AudioBuffer of white noise as follows:

function WhiteNoiseGenerated(callback) {
 // Generate a 5 second white noise buffer.
 var lengthInSamples = 5 * context.sampleRate;
 var buffer = context.createBuffer(1, lengthInSamples, context.sampleRate);
 var data = buffer.getChannelData(0);

 for (var i = 0; i < lengthInSamples; i++) {
 data[i] = ((Math.random() * 2) - 1);
 }

 // Create a source node from the buffer.
 this.node = context.createBufferSource();
 this.node.buffer = buffer;
 this.node.loop = true;
 this.node.start(0);
}

Next, we can simulate various phases of the gun firing—attack, decay, and release—in
an envelope:

function Envelope() {
 this.node = context.createGain()
 this.node.gain.value = 0;
}

Envelope.prototype.addEventToQueue = function() {
 this.node.gain.linearRampToValueAtTime(0, context.currentTime);

46 | Chapter 6: Advanced Topics

 this.node.gain.linearRampToValueAtTime(1, context.currentTime + 0.001);
 this.node.gain.linearRampToValueAtTime(0.3, context.currentTime + 0.101);
 this.node.gain.linearRampToValueAtTime(0, context.currentTime + 0.500);
};

Finally, we can connect the voice outputs to a filter to allow a simulation of distance:

 this.voices = [];
 this.voiceIndex = 0;

 var noise = new WhiteNoise();

 var filter = context.createBiquadFilter();
 filter.type = 0;
 filter.Q.value = 1;
 filter.frequency.value = 800;

 // Initialize multiple voices.
 for (var i = 0; i < VOICE_COUNT; i++) {
 var voice = new Envelope();
 noise.connect(voice.node);
 voice.connect(filter);
 this.voices.push(voice);
 }

 var gainMaster = context.createGainNode();
 gainMaster.gain.value = 5;
 filter.connect(gainMaster);

 gainMaster.connect(context.destination);

This example is borrowed from BBC’s gunfire effects page with small modifications,
including a port to JavaScript.

As you can see, this approach is very powerful but gets complicated pretty quickly,
going beyond the scope of this book. For more information about procedural sound
generation, take a look at Andy Farnell’s Practical Synthetic Sound Design tutorials
and book.

Room Effects
Before sound gets from its source to our ears, it bounces off walls, buildings, furni‐
ture, carpets, and other objects. Every such collision changes properties of the sound.
For example, clapping your hands outside sounds very different from clapping your
hands inside a large cathedral, which can cause audible reverberations for several sec‐
onds. Games with high production value aim to imitate these effects. Creating a sepa‐
rate set of samples for each acoustic environment is often prohibitively expensive,
since it requires a lot of effort from the audio designer, and a lot of assets, and thus a
larger amount of game data.

Room Effects | 47

http://webaudio.prototyping.bbc.co.uk/gunfire/
http://obiwannabe.co.uk/tutorials/html/tutorials_main.html

The Web Audio API comes with a facility to simulate these various acoustic environ‐
ments called a ConvolverNode. Examples of effects that you can get out of the convo‐
lution engine include chorus effects, reverberation, and telephone-like speech.

The idea for producing room effects is to play back a reference sound in a room,
record it, and then (metaphorically) take the difference between the original sound
and the recorded one. The result of this is an impulse response that captures the effect
that the room has on a sound. These impulse responses are painstakingly recorded in
very specific studio settings, and doing this on your own requires serious dedication.
Luckily, there are sites that host many of these pre-recorded impulse response files
(stored as audio files) for your convenience.

The Web Audio API provides an easy way to apply these impulse responses to your
sounds using the ConvolverNode. This node takes an impulse response buffer, which
is a regular AudioBuffer with the impulse response file loaded into it. The convolver
is effectively a very complex filter (like the BiquadFilterNode), but rather than select‐
ing from a set of effect types, it can be configured with an arbitrary filter response:

var impulseResponseBuffer = null;
function loadImpulseResponse() {
 loadBuffer('impulse.wav', function(buffer) {
 impulseResponseBuffer = buffer;
 });
}

function play() {
 // Make a source node for the sample.
 var source = context.createBufferSource();
 source.buffer = this.buffer;
 // Make a convolver node for the impulse response.
 var convolver = context.createConvolver();
 // Set the impulse response buffer.
 convolver.buffer = impulseResponseBuffer;
 // Connect graph.
 source.connect(convolver);
 convolver.connect(context.destination);
}

The convolver node “smushes” the input sound and its impulse response by comput‐
ing a convolution, a mathematically intensive function. The result is something that
sounds as if it was produced in the room where the impulse response was recorded.
In practice, it often makes sense to mix the original sound (called the dry mix) with
the convolved sound (called the wet mix), and use an equal-power crossfade to con‐
trol how much of the effect you want to apply.

It’s also possible to generate these impulse responses synthetically, but this topic is
outside of the scope of this book.

48 | Chapter 6: Advanced Topics

Spatialized Sound
Games are often set in a world where objects have positions in space, either in 2D or
in 3D. If this is the case, spatialized audio can greatly increase the immersiveness of
the experience. Luckily, the Web Audio API comes with built-in positional audio fea‐
tures (stereo for now) that are quite straightforward to use.

As you experiment with spatialized sound, make sure that you are listening through
stereo speakers (preferably headphones). This will give you a better idea of how the
left and right channels are being transformed by your spatialization approach.

The Web Audio API model has three aspects of increasing complexity, with many
concepts borrowed from OpenAL:

1. Position and orientation of sources and listeners
2. Parameters associated with the source audio cones
3. Relative velocities of sources and listeners

There is a single listener (AudioListener) attached to the Web Audio API context
that can be configured in space through position and orientation. Each source can be
passed through a panner node (AudioPannerNode), which spatializes the input audio.
Based on the relative position of the sources and the listener, the Web Audio API
computes the correct gain modifications.

There are a few things to know about the assumptions that the API makes. The first is
that the listener is at the origin (0, 0, 0) by default. Positional API coordinates are
unitless, so in practice, it takes some multiplier tweaking to make things sound the
way you want. Secondly, orientations are specified as direction vectors (with a length
of one). Finally, in this coordinate space, positive y points upward, which is the oppo‐
site of most computer graphics systems.

With these things in mind, here’s an example of how you can change the position of a
source node that is being spatialized in 2D via a panner node (PannerNode):

// Position the listener at the origin (the default, just added for the sake of being explicit)
context.listener.setPosition(0, 0, 0);

// Position the panner node.
// Assume X and Y are in screen coordinates and the listener is at screen center.
var panner = context.createPanner();
var centerX = WIDTH/2;
var centerY = HEIGHT/2;
var x = (X - centerX) / WIDTH;
// The y coordinate is flipped to match the canvas coordinate space.
var y = (Y - centerY) / HEIGHT;
// Place the z coordinate slightly in behind the listener.
var z = -0.5;

Spatialized Sound | 49

http://connect.creativelabs.com/openal/default.aspx

// Tweak multiplier as necessary.
var scaleFactor = 2;
panner.setPosition(x * scaleFactor, y * scaleFactor, z);

// Convert angle into a unit vector.
panner.setOrientation(Math.cos(angle), -Math.sin(angle), 1);

// Connect the node you want to spatialize to a panner.
source.connect(panner);

In addition to taking into account relative positions and orientations, each source has
a configurable audio cone, as shown in Figure 6-3.

Figure 6-3. A diagram of panners and the listener in 2D space

Once you have specified an inner and outer cone, you end up with a separation of
space into three parts, as seen in Figure 6-3:

1. Inner cone
2. Outer cone
3. Neither cone

Each of these sub-spaces can have a gain multiplier associated with it as an extra hint
for the positional model. For example, to emulate targeted sound, we might have the
following configuration:

panner.coneInnerAngle = 5;
panner.coneOuterAngle = 10;
panner.coneGain = 0.5;
panner.coneOuterGain = 0.2;

A dispersed sound can have a very different set of parameters. An omnidirectional
source has a 360-degree inner cone, and its orientation makes no difference for
spatialization:

panner.coneInnerAngle = 180;
panner.coneGain = 0.5;

In addition to position, orientation, and sound cones, sources and listeners can also
specify velocity. This value is important for simulating pitch changes as a result of the
doppler effect.

50 | Chapter 6: Advanced Topics

Audio Processing with JavaScript
Generally speaking, the Web Audio API aims to provide enough primitives (mostly
via audio nodes) to do most common audio tasks. The idea is that these modules are
written in C++ and are much faster than the same code written in JavaScript.

However, the API also provides a ScriptProcessorNode that lets web developers syn‐
thesize and process audio directly in JavaScript. For example, you could prototype
custom DSP effects using this approach, or illustrate concepts for educational appli‐
cations.

To get started, create a ScriptProcessorNode. This node processes sound in chunks
specified as a parameter to the node (bufferSize), which must be a power of two. Err
on the side of using a larger buffer, since it gives you more of a safety margin against
glitches if the main thread is busy with other things, such as page re-layout, garbage
collection, or JavaScript callbacks:

// Create a ScriptProcessorNode.
var processor = context.createScriptProcessor(2048);
// Assign the onProcess function to be called for every buffer.
processor.onaudioprocess = onProcess;
// Assuming source exists, connect it to a script processor.
source.connect(processor);

Once you have the audio data piping into a JavaScript function, you can analyze the
stream by examining the input buffer, or directly change the output by modifying the
output buffer. For example, we can easily swap the left and right channels by imple‐
menting the following script processor:

function onProcess(e) {
 var leftIn = e.inputBuffer.getChannelData(0);
 var rightIn = e.inputBuffer.getChannelData(1);
 var leftOut = e.outputBuffer.getChannelData(0);
 var rightOut = e.outputBuffer.getChannelData(1);

 for (var i = 0; i < leftIn.length; i++) {
 // Flip left and right channels.
 leftOut[i] = rightIn[i];
 rightOut[i] = leftIn[i];
 }
}

Note that you should never do this channel swap in production, since using a Chan
nelSplitterNode followed by a ChannelMergerNode is far more efficient. As another
example, we can add a random noise to the mix. We do this by simply adding a ran‐
dom offset to the signal. By making the signal completely random, we can generate
white noise, which is actually quite useful in many applications [see “Procedurally
Generated Sound” on page 45]:

Audio Processing with JavaScript | 51

function onProcess(e) {
 var leftOut = e.outputBuffer.getChannelData(0);
 var rightOut = e.outputBuffer.getChannelData(1);

 for (var i = 0; i < leftOut.length; i++) {
 // Add some noise
 leftOut[i] += (Math.random() - 0.5) * NOISE_FACTOR;
 rightOut[i] += (Math.random() - 0.5) * NOISE_FACTOR;
 }
}

The main issue with using script processing nodes is performance. Using JavaScript
to implement these mathematically-intensive algorithms is significantly slower than
implementing them directly in the native code of the browser.

52 | Chapter 6: Advanced Topics

CHAPTER 7

Integrating with Other Technologies

The Web Audio API makes audio processing and analysis a fundamental part of the
web platform. As a core building block for web developers, it is designed to play well
with other technologies.

Setting Up Background Music with the <audio> Tag
As I mentioned at the very start of the book, the <audio> tag has many limitations
that make it undesirable for games and interactive applications. One advantage of this
HTML5 feature, however, is that it has built-in buffering and streaming support,
making it ideal for long-form playback. Loading a large buffer is slow from a network
perspective, and expensive from a memory-management perspective. The <audio>
tag setup is ideal for music playback or for a game soundtrack.

Rather than going the usual path of loading a sound directly by issuing an XMLHttpRe
quest and then decoding the buffer, you can use the media stream audio source node
(MediaElementAudioSourceNode) to create nodes that behave much like audio source
nodes (AudioSourceNode), but wrap an existing <audio> tag. Once we have this node
connected to our audio graph, we can use our knowledge of the Web Audio API to do
great things. This small example applies a low-pass filter to the <audio> tag:

window.addEventListener('load', onLoad, false);

function onLoad() {
 var audio = new Audio();
 source = context.createMediaElementSource(audio);
 var filter = context.createBiquadFilter();
 filter.type = filter.LOWPASS;
 filter.frequency.value = 440;

 source.connect(this.filter);

53

 filter.connect(context.destination);
 audio.src = 'http://example.com/the.mp3';
 audio.play();
}

Live Audio Input
One highly requested feature of the Web Audio API is integration with getUserMe
dia, which gives browsers access to the audio/video stream of connected micro‐
phones and cameras. At the time of this writing, this feature is available behind a flag
in Chrome. To enable it, you need to visit about:flags and turn on the “Web Audio
Input” experiment, as in Figure 7-1.

Figure 7-1. Enabling web audio input in Chrome

Once this is enabled, you can use the MediaStreamSourceNode Web Audio node. This
node wraps around the audio stream object that is available once the stream is estab‐
lished. This is directly analogous to the way that MediaElementSourceNodes wrap
<audio> elements. In the following sample, we visualize the live audio input that has
been processed by a notch filter:

function getLiveInput() {
 // Only get the audio stream.
 navigator.webkitGetUserMedia({audio: true}, onStream, onStreamError);
};

function onStream(stream) {
 // Wrap a MediaStreamSourceNode around the live input stream.
 var input = context.createMediaStreamSource(stream);
 // Connect the input to a filter.
 var filter = context.createBiquadFilter();
 filter.frequency.value = 60.0;
 filter.type = filter.NOTCH;
 filter.Q = 10.0;

 var analyser = context.createAnalyser();

 // Connect graph.
 input.connect(filter);
 filter.connect(analyser);

 // Set up an animation.
 requestAnimationFrame(render);
};

54 | Chapter 7: Integrating with Other Technologies

http://example.com/the.mp3

function onStreamError(e) {
 console.error(e);
};

function render() {
 // Visualize the live audio input.
 requestAnimationFrame(render);
};

Another way to establish streams is based on a WebRTC PeerConnection. By bring‐
ing a communication stream into the Web Audio API, you could, for example, spati‐
alize multiple participants in a video conference.

Page Visibility and Audio Playback
Whenever you develop a web application that involves audio playback, you should be
cognizant of the state of the page. The classic failure mode here is that one of many
tabs is playing sound, but you have no idea which one it is. This may make sense for a
music player application, in which you want music to continue playing regardless of
the visibility of the page. However, for a game, you often want to pause gameplay
(and sound playback) when the page is no longer in the foreground.

Luckily, the Page Visibility API provides functionality to detect when a page becomes
hidden or visible. The state can be determined from the Boolean document.hidden
property. The event that fires when the visibility changes is called visibilitychange.
Because the API is still considered to be experimental, all of these names are webkit-
prefixed. With this in mind, the following code will stop a source node when a page
becomes hidden, and resume it when the page becomes visible:

// Listen to the webkitvisibilitychange event.
document.addEventListener('webkitvisibilitychange', onVisibilityChange);

function onVisibilityChange() {
 if (document.webkitHidden) {
 source.stop(0);
 } else {
 source.start(0);
 }
}

Page Visibility and Audio Playback | 55

CHAPTER 8

Conclusion

Thanks for reading this book on the Web Audio API. If you are a digital-audio nov‐
ice, I hope that I have succeeded in giving you a solid understanding of some of the
fundamental concepts. If you are a Web Audio API enthusiast, hopefully you learned
something new.

Before closing, I would like to point you to a number of excellent books and web
resources that I found extremely interesting and useful while researching and writing
this book. My top five follow:

1. The “Web Audio API Specification” by Chris Rogers
2. Real Sound Synthesis for Interactive Applications by Perry R. Cook (A K Peters,

2002)
3. Mastering Audio: The Art and the Science by Bob Katz (Focal Press, 2002)
4. Andy Farnell’s “Practical Synthetic Sound Design” tutorials
5. “All About Decibels, Part I: What’s your dB IQ?” by Lionel Dumond

57

https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
http://obiwannabe.co.uk/tutorials/html/tutorials_main.html
http://faculty.mccneb.edu/ccarlson/VACA1010/VACA1010_CD/dB%20part%201.pdf

APPENDIX A

Deprecation Notes

The Web Audio API is still evolving, and some methods are being added, removed,
and renamed. This section describes some of the recent changes made to the API:

• AudioBufferSourceNode.noteOn() has been changed to start().
• AudioBufferSourceNode.noteGrainOn() has been changed to start().
• AudioBufferSourceNode.noteOff() has been changed to stop().
• AudioContext.createGainNode() has been changed to createGain().
• AudioContext.createDelayNode() has been changed to createDelay().
• AudioContext.createJavaScriptNode() has been changed to createScriptPro
cessor().

• OscillatorNode.noteOn() has been changed to start().
• OscillatorNode.noteOff() has been changed to stop().
• AudioParam.setTargetValueAtTime() has been changed to setTargetAtTime().

In addition to these changes, many of the constants in the Web Audio API are chang‐
ing from variables into string enumerations. For example, filter types are going from
filter.LOWPASS to lowpass, oscillator types are going from osc.SINE to sine, etc.

Throughout the book, I’ve used new versions of all of the APIs, so those using older
implementations of the API may need to revert back to earlier methods and constant
naming.

For the most up-to-date information regarding naming changes, see the Web Audio
specification.

59

http://bit.ly/105wGL0
http://bit.ly/105wGL0

APPENDIX B

Glossary

Audio context
A container for all audio nodes in the Web Audio API graph.

Bit depth
The number of bits allocated for each value in an audio data stream.

Bit rate
The number of bits per second that a compressed audio file will output.

Cents
A logarithmic unit of measure used for musical intervals. Twelve-tone equal tem‐
perament divides the octave into 12 semitones of 100 cents each.

Clipping
What happens to an audio wave when it exceeds the highest permitted value (0
dBFS).

Decibels
A relative unit used to measure the intensity of a sound signal.

dBFS
Sound level relative to the full scale (nominally 0 dBFS). This unit is negative
unless sound is being clipped.

dBSPL
Sound pressure level relative to the threshold of human hearing.

FFT
Fast Fourier Transform, an algorithm for breaking a sound wave up into its con‐
stituent sine waves.

61

Hertz
A measure of frequency. The number of times per second that something hap‐
pens.

Nyquist frequency
Half of the sample rate of an audio buffer.

PCM
Pulse code modulation, a way of storing sound waves as an array of numbers.

Playback rate
The speed at which an audio buffer is played back.

Sample rate
The number of times per second that an analog sound is sampled during quanti‐
zation, or the process of converting an analog signal into a digital one.

62 | Appendix B: Glossary

About the Author
Boris Smus is a front-end engineer working for Google Chrome Developer Relations,
specializing in mobile web and web audio. Before Google, he was a Human-
Computer Interaction researcher at Carnegie Mellon, and a software engineer at
Apple.

Colophon
The animal on the cover of Web Audio API is a brown long-eared bat (Plecotus auri‐
tus).

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Cassell’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Structure of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Thanks!

	Chapter 1. Fundamentals
	A Brief History of Audio on the Web
	Games and Interactivity
	The Audio Context
	Initializing an Audio Context
	Types of Web Audio Nodes
	Connecting the Audio Graph
	Power of Modular Routing
	Loading and Playing Sounds
	Putting It All Together

	Chapter 2. Perfect Timing and Latency
	Timing Model
	Precise Playback and Resume
	Scheduling Precise Rhythms
	Changing Audio Parameters
	Gradually Varying Audio Parameters
	Custom Timing Curves

	Chapter 3. Volume and Loudness
	Equal Power Crossfading
	Using Meters to Detect and Prevent Clipping
	Dynamics Compression

	Chapter 4. Pitch and the Frequency Domain
	Pitch and playbackRate
	Multiple Sounds with Variations
	Oscillator-Based Direct Sound Synthesis

	Chapter 5. Analysis and Visualization
	Frequency Analysis
	Animating with requestAnimationFrame
	Visualizing Sound

	Chapter 6. Advanced Topics
	Adding Effects via Filters
	Procedurally Generated Sound
	Room Effects
	Spatialized Sound
	Audio Processing with JavaScript

	Chapter 7. Integrating with Other Technologies
	Setting Up Background Music with the <audio> Tag
	Live Audio Input
	Page Visibility and Audio Playback

	Chapter 8. Conclusion
	Appendix A. Deprecation Notes
	Appendix B. Glossary
	About the Author

